Search

Holy Bot

Bedroom music production, gaming and random shit

Tag

tutorial

Create a Shimmer Reverb

Shimmer is a feedback-reverb-pitch-shift-effect made popular by Brian Eno and Daniel Lanois. The idea is to feed a reverb to a pitch shifter and back again. Each delay repetition gets shifted one octave up. In this case I’m using Ableton Live with stock effects, the Reverb and Grain Delay where the signal gets delayed and pitch shifted. You can use these guidelines in different environments (hardware/software) but here’s how I do it:

  1. Insert two Return Tracks and put a Reverb on A.
  2. Turn off Input Processing Hi Cut, set Global Quality to High, turn off Diffusion Network High, a fairly long Decay Time and turn the Dry/Wet to 100 %.
  3. Enable Send B on the Return Track A and set it to max.
  4. Use the Grain Delay on Return Track B.
  5. Set Frequency to 1.00 Hz and Pitch to 12.0.
  6. Enable Send A on the Return Track B and set it to max.
  7. Dial Send A of the Track with the signal source that you what to shimmer.

Also try to bring in Send B on the signal. And play with the Size and Diffuse controls of the Reverb.

Advertisements

Split Frequency, Split

I’ve written about the perks of putting side-chain compression on only the low frequencies of a bass earlier.

To do so, three copies of the sound are needed. Or, as this post will show, you could split the frequency into three bands (high, mid and low). By doing this, it is possible to apply different signal processing on each band.

Now I usually try to write about music production on a more abstract level, and not about a specific DAW or instrument, but this time I going to illustrate with Ableton Live on Mac. The theory is the same though, you just need to figure out how it works in your particular environment.

So I’m using the stock effect Multiband Dynamics to split frequency. The device has noticeable affect and coloration on the signal, even when the intensity amount if set to zero, but it should be transparent enough for now.

  1. Drop a Multiband Dynamics in the Device View.
  2. Set the Amount control to 0.0 % to neutralize compression or gain adjustments to the signal.
  3. Group the Multiband Dynamics in an Audio Effect Rack (select the device and press CMD + G).
  4. Show the Chain List of the rack.
  5. Dictate the crossover points on High and Low (the Mid consists of what is left in between, so remember to also change the crossover points in the mid chain if you make adjustments on the others), e.g. set the bottom of the frequency range of the high band to 1.00 kHz.
  6. Duplicate the selected chain two times.
  7. Rename all of the chains High, Mid and Low, from top to bottom.
  8. Solo each band respectively on the Split Freq, i.e. solo Low on the low chain.

Now process each band individually. Use a Utility device on the low chain and set Width to 0.0 % to direct the low frequencies to mono. Also, on this band, set up a side-chain compression triggered by the kick drum. Try a stereo widening effect and some reverb on the mid chain. And perhaps a little saturation to add some crunch on the high chain, I dunno, it’s up to you.

Bedroom Studio Tips Revisited

Three years ago I posted a list of some music production methods and tips on my blog that still gets some attention. Now, here’s some other good read (I hope).

Moreover, you really should check out the most popular post on this blog about the best tips on music production that I can think of.

FM à la Analog Four

One of my favorite synths is the Analog Four, and with the OS update 1.22 a while back, Elektron added new LFO synchronization modes and destinations and made this synth even more awesome. (If I only could take one of my synths to a deserted island, it would be the Analog Four.) Anyway, in short that means I’m now able to apply pitch tracked LFO FM behavior.

Here’s a way to start (not rules):

  1. Set triangle (as a substitute for sinus) waveform on an oscillator.
  2. Open up both filters.
  3. Set the LFO speed to any multiples of 16.
  4. Set the LFO multiplier to over 512 and synchronize it to the oscillator you’re working with.
  5. Let the LFO restart when a note is played on Trig Mode.
  6. Choose sinus as the LFO waveform.
  7. Set frequency or pitch modulation to the oscillator as LFO destination. (Also try different destinations later, like the filter frequency.)
  8. Set depth of the LFO modulation (or, if you’re using the first oscillator, let the second assignable envelope control this).
  9. If you use Depth A in the step above, then try to fade in or fade out the modulation.

Also, there’s a few videos on YouTube describing these methods, like this, which is a good walkthrough, even though it’s a bit unfocused and lengthy.

Rhythm Against Rhythm

The term polyrhythm denotes the rhythmic dissonance created by the simultaneous use of two or more conflicting rhythms in different time signatures. This can be systemic, the basis of an entire track – cross-rhythm – or just a brief momentary disruption, e.g. the hi-hat or snare triplets rolls on a trap beat.

Try it out yourself: Program a drum loop, set the kick and snare in a straight 4/4 rhythm, but put hi-hats in a 6/8. Add a bassline pattern in 4/4 and put some chords in 5/4, voilà! (You may have to set up your sequencer or piano roll grid to 48th notes.)

With polyrhythms, this loop just got more interesting, less predictable and got some character.

Today’s Best Tips on Music Production

10 essential tips… 20 mistakes… 30 production secrets and so on, such lists seems to be really popular these days. Although many of them are just full of crap. Especially forget about the longer checklists – even if you could find some good advices there, most tips are just nonsense, like “don’t mix bass with headphones”.

Anyway, to you aspiring producer, here’s a few things I think you should care about:

  • Listen to different styles of music and try to identify what you like and what you dislike.
  • Analyze your favorite artists’ work in great detail. Theorize with both feet on the ground.
  • Go ahead and copy other artists, but don’t settle there – tweak and add your own style and flavor.
  • Cover, remix and remake your favorite tracks, it’s a good and fun way to learn about music.
  • Use reference tracks, compare your shit to others, but don’t get paralyzed when your track doesn’t bang as loud as them.
  • Learn about synthesis and learn how to sound design different kind of instruments, e.g. strings, plucks, percussion (make synthetic drums using waveforms, a noise generator, filters, envelopes and such).
  • Check your music productions on several systems; from high-end studio monitor speakers to iPhone earbuds.
  • Sleep on it. Let your track mature over night and return to it with fresh ears.
  • Go hardware, get tactile if you are growing tired of a software-based environment. To actually play an instrument or to turn a real knob is really something else.
  • Get inspiration from collaborations with other artists. Just reach out to people you admire – this is globalization, this is the time of teh internetz.
  • Try to keep passionate about creating music, but don’t be afraid to make some demands of yourself, just to push things forward.

A Method to Make Synth Strings

Recently I got a Roland Alpha Juno-2. It’s an analog synth that has a couple of uncommon features: pulse width modulation on both the pulse/square and the sawtooth waveform, and a 7-stage contour generator, which adds a huge range of sonic possibilities.

Anyway, the AJ-2’s pretty good for lush polyphonic pads and strings. But instead of writing a review of this nearly 30 year old synth, I thought I’d give you guys a quick rundown of how to make strings, which you can translate to other subtractive synths. For this, I’m skipping the unique features of the AJs, although it’s best if the synth you’re using has pulse width modulation (PWM).

  1. Set a first oscillator to pulse, give it a pitch of 8’.
  2. Add slow movement by applying some PWM. You might need to use a LFO to do this; route LFO (triangle wave) as source and the oscillator’s pulse width as destination.
  3. Set a second oscillator to sawtooth and an octave higher than the first. Detune the pitch a few cent steps to render unison and fatten the sound.
  4. Mix the two oscillators so that the second is slightly lower.
  5. Add a subtle amount of vibrato (pitch modulation) using a LFO (triangle wave or sample and hold) to modulate the pitch of both oscillators.
  6. Bring in some white noise, though most of it should be muted by the LPF (see below), it can give the sound a little shimmer.
  7. Add a sub-oscillator set an octave down from the first oscillator.
  8. Set the low-pass filter to about halfway (aim for a mellow tone) and add a bit of resonance.
  9. Optionally, you can tweak the filter envelope for timbral variation.
  10. Adjust the amplification envelope to a slow attack and a medium release time. Bring up sustain so that the sound doesn’t lose volume over time.
  11. As far as effects go, try chorus, a little delay and/or a hell of a lot of reverb.

There you go – a thick, lush, synth string. Nothing like real orchestral strings, but yet a sound with its own characteristic, that’s just as valid as any other instrument.

Machined Drums Part 2

This is the second part of synthesizing drum sound. The first part covered the kick drum and the snare, now it’s time for the hihats and the hand clap. Let’s dig right into it.

Synthesize Hihats

There are several ways to create a metallic-sounding hihat and it can be rather complex. A simple way though, is to use a pure noise source with HPF, or a square wave with ring modulation. (It’s also possible to mix these two sound sources.)

Set the envelope of the VCA to a slow decay and a quick release time. Play staccato which should render the closed hithat, while a held note produces the open sound. You could of course save two patches with different decay and release to finetune both of the variants.

Add presents to the hihats by boosting at 3 kHz on the EQ.

It’s very hard to mimic recognisable, convincing, metallic percussion. This quest have defeated many before me, thus I’m just letting it be. Still, if you insist of accepting a sound you could use as a cymbal – though it sounds totally unrealistic – then grab a hihat patch, accentuate the high-pass filtered white noise, add a longer decay and release time and put some flanger effect to it.

Synthesize Hand Clap

To achieve something that can be called a hand clap, try to run white noise through a band-pass filter and use two individual EGs to shape the VCA. Modulate the first envelope with a LFO; set to sawtooth and the frequency to about half way, to and render a clap effect. Then set a second envelope to a long decay to add reverb. You should tweak these parameters as you se fit.

Boost the mids on the EQ to make an aggressive snap.

Try to put on a gated reverb effect to the sound, or just a tiny delay.

Machined Drums Part 1

This is the first of two articles about creating drum sounds with a synthesizer. While many of the popular vintage Roland TR-x0x sounds are generated by analog circuitry, it is possible to achieve a variety of drum sounds using a common monosynth.

My aim is to give you some basic ideas and guidelines of the concept – presented as simple as possible. These are, after all, quick and dirty tips and tricks of a rather complex subject.

First off, you can use an analog or a digital synth, even a softsynth, it really doesn’t matter, although it needs to meet the given specifications, like noise source, voltage-controlled amplifier (VCA), preferably a faster envelope generator (EG) and so on. The output will of course differ from different synths.

Ideally, the synth should have a couple of oscillators (VCO, DCO et cetera) with different waveforms, a ring modulator, a white noise generator, high-pass (HPF) and low-pass filters (LPF) able to self-oscillate, ADSR EGs, separate for filter and amplifier, and in a few cases, e.g. hand claps, a low-frequency oscillator (LFO) with selectable waveforms.

Synthesizing the Kick Drum

Use a LPF that can be sent into self-oscillation. Set cutoff to zero, turn up the resonance almost to max. Use a filter envelope to modulate the cutoff in a quick downward sweep, that is, turn up decay, just a little bit. Also give the sound a little release time. VCF envelope amount should just over half.

Combine this zap or thud sound with a VCO sine wave or a sub oscillator played on a low note. On the amplification envelope, set a short decay and some release. Go ahead and contour these EG parameters; a longer decay and release time can introduce a tonal quality to the sound (but keep attack and sustain at bay). To get it right, you might need to reduce the VCF EG amount and raise the cutoff frequency just to let the lowest harmonics pass.

You could boost a little in the 50-150 Hz range on an EQ to add some bottom depth.

Synthesizing the Snare

Use a white noise source and two oscillators, i.e. triangle wave, at different pitches. Run the noise through an HPF to add more snap.

For a more complex sound, you could use individual VCAs, filters and contour generators for the noise and the oscillators, and then mix the levels of the three sound sources. If you use a separate HPF for the oscillators, try sending it into self-oscillation, to get extra tone and resonance.

Contour the VCA (or multiple VCAs) with a just little decay and release (as always, the attack should be instantaneous and a snare drum shouldn’t sustain).

Use an EQ and cut the low-end. Boost the mids around 500 Hz to add body to the sound, and boost some at 2.5 kHz for extra snap and attack.

That’s it for now. Here’s a sound example of drums made on the microKORG using this concept, https://soundcloud.com/johaneckerstrom/suffix.

The next part will cover synthesized hihats, toms and hand claps, and perhaps even cowbells, claves and metallic percussion. We’ll see.

Blog at WordPress.com.

Up ↑