Search

Holy Bot

Bedroom music production, gaming and random shit

Tag

musicmaking

About Recursive Modulation

Here’s something for you synth programmers to try out: Modulate certain aspects of an envelope with itself.

For example, set the modulation destination of the filter envelope to affect its own parameter, such as its (linear) attack or decay time, by a positive or negative amount. This should render a concave or convex shape, respectively.

This effect is referred to as recursive modulation.

Now try to set filter envelope attack to 32, and envelope amount to 48. Then go to the modulation matrix and select the filter envelope as source, and modulate the destination filter envelope attack by 48.

It’s also possible to use this method on a LFO. Modulating its own level will also affect the shape of the LFO. And by modulate its own rate, will affect both the overall rate and the shape.

Advertisements

About Effects Chain Order

First off, there’s really no correct order. It’s all about preference, what you want to achieve and context. Although some effects do seem to work better in certain places of the signal path than in others. Still, feel free to experiment.

Inserts and Send Effects

Effects are chained in either series or parallel. For parallel processing, use send effects to process a copy of a signal (without affecting the original). Use auxiliary sends for time-based effects, such as reverb and delay.

No rules, but in most situations it makes more sense, and saves processing power and setup time, if for example reverb and delay are shared between all channels, rather than inserting a new instance of each effect in an insert slot on each channel.

Use insert effects to change the signal completely, e.g. dynamic processors like compressors, expanders, noise gates, transient shapers.

In terms of signal flow, the channel insert connections usually come before the channel EQ, fader and pan.

Daisy Chain Effects

It is possible to daisy chained effects into the signal path. The order of the effects determines the sound and have different impacts. Here’s a suggestion:

  1. Noise gate
  2. Subtractive EQ
  3. Dynamics (compressors, limiters, expanders)
  4. Gain (distortion, saturation)
  5. General EQ
  6. Time-based modulation (chorus, flanger, phaser)
  7. Pure time-based (delay, reverb)

To clean up the signal, put the gate first, and it will work better with a wider dynamic range (than for example after a compressor).

Then use an EQ to cut away the unwanted frequencies; do this to avoid enhancing them with later effects. (Also maybe roll off frequencies below 30 Hz.)

Then place a compressor to adjust the dynamics of the signal.

After that, put on some overdrive boost or tape saturation effect. Also, such effects can work well in the beginning of the chain – as part of the initial sound – due to the harmonics generated by a distortion device, which bring richness to the effects that follow.

After gain effect, EQ to shape the tonal balance, but be careful when boosting.

At the end of the chain, modulation effects are usually placed after gain-related effects and before pure time-based effects.

Pure time-based effects such as delay and reverb usually come last in the signal chain.

The Mastering Chain

This post is mainly covering effects chain for channels and buses, but when entering the mastering stage, a conventional order of the mastering chain is:

  1. EQ
  2. Dynamics
  3. Post EQ
  4. Harmonic exciter
  5. Stereo imaging
  6. Loudness maximizer

Read more about mastering, http://palsen.tumblr.com/post/76108679797/mastering-bedroom-style.

Translate Sub onto Smaller Speakers

There’s a few things you can do to make your bass sound on smaller speakers like laptops, tablets and cellphones. First you need fundamental and harmonic content on your bass. The fundamental frequency is the base foundation note that represents the pitch that is played and the harmonics are the following frequencies that support the fundamental. In short, it’s the higher frequency harmonics that allow for the sub to cut through the mix.

One idea is to create higher frequency harmonics. The harmonics should be in unison with the fundamental frequency, but don’t contain it. (The harmonics trick your brain into hearing lower frequencies that aren’t really there.) Add a touch of harmonic saturation, drive a little warmth, a little fuzz to help that sub cut through. The harmonic distortion, adds high-frequency information to reveal presence on systems with poor bass response.

Also try to copy the bass to a parallell channel, bitcrush the higher harmonics and cut all lows and mix with the original bass.

If you’re beefing up your main bass by layering a separate, low-passed sine wave at the octave below, perhaps try square (or triangle) to add some subtle higher frequencies that allow the sub bass to translate better than a pure sine wave.

You can also try to EQ the bass. Try to boost the harmonic multiples of the fundamental frequency to hear some definition from the bass sound. And boosting above 300 Hz will bring out the bass’s unique timbral character. Actually, try around 1 kHz (but add a low-pass filter at around 2-3 kHz).

Use high-pass filtering (to clear the low-end frequencies and make room for the intended bass sound), and you can also side-chain your sub bass to keep it from fighting with the kick drum.

When it comes to kick drums you can add a small click noise to help it translate onto smaller speakers.

P.S. There are also plugins that use psycho-acoustics to calculate precise harmonics that are related to the fundamental tones of bass.

Headroom for MP3

I’ve written about the importance of headroom when submitting your track to a professional mastering engineer, but you should also pay attention to headroom when you do this on your own and when you encode MP3s.

Okay so when the track is mastered at 0 dB (the maximum level for digital audio files) many converters and encoders are prone to clip. Lossy compression formats utilize psychoacoustic models to remove audio information, and by doing so introduces an approximation error, a noise which can increase peak levels and cause clipping in the audio signal – even if the uncompressed source audio file appears to peak under 0 dB.

In Practice

For example SoundCloud transcodes uploaded audio to 128 Kbps MP3 for streaming. In this scenario, use a true peak limiter to ensure the right margin depending on the source material. A margin of -1.0 or -1.5 dBFS should work for no distortion (sometimes -0.3, -0.5 or -0.7 would work, but it’s safer to have greater margin).

https://api.soundcloud.com/tracks/292135058/stream?client_id=3cQaPshpEeLqMsNFAUw1Q?plead=please-dont-download-this-or-our-lawyers-wont-let-us-host-audio

“Hope my haters keep a special place in their heart for me”

Envelope, Basics

In sound design, an ADSR envelope modulates the sound and sculpts its timbre thus changing its sonic character. ADSR is an acronym that stands for its four stages Attack, Decay, Sustain and Release. The contour of the ADSR envelope is specified by three time-parameters and one level-parameter like this:

(A) Attack time is the time it takes for the signal to go from minimum to maximum when the key is pressed.
(D) Decay time is the time for the signal to drop to the designated sustain level (if it is not set to maximum, then decay time has no meaning).
(S) Sustain level is the level of the signal while the key is hold.
® Release time is the time taken for the signal to fade out after the key is released.

Note that the signal will jump to the release stage when the key is released no matter where it is in the envelope. Hence if a short note is played, the signal might not had time to rise to the maximum in the envelope, therefore release will be relative to the level reached in the envelope.

Envelopes can be applied not only to volume, but also to filter frequencies or oscillator pitches.

To correctly tune the pitch envelope modulation range:

  1. First turn the modulation/envelope amount knob down.
  2. Press the key and set the desired minimum with the pitch knob (offset for modulation).
  3. Turn sustain level all the way up, press the key and let the signal reach maximum.
  4. While on sustain, dial the modulation knob to the maximum pitch.

About cutoff modulation, the cutoff knob is the starting point of the modulation, that means that the sound will not be altered if cutoff is set to maximum.

Moreover, it is sometimes possible to inverted the envelope and reverse its behavior.

Envelopes, Basics

In sound design, an ADSR envelope modulates the sound and sculpts its timbre thus changing its sonic character. ADSR is an acronym that stands for its four stages Attack, Decay, Sustain and Release. The contour of the ADSR envelope is specified by three time-parameters and one level-parameter like this:

(A) Attack time is the time it takes for the signal to go from minimum to maximum when the key is pressed.
(D) Decay time is the time for the signal to drop to the designated sustain level (if it is not set to maximum, then decay time has no meaning).
(S) Sustain level is the level of the signal while the key is hold.
® Release time is the time taken for the signal to fade out after the key is released.

Note that the signal will jump to the release stage when the key is released no matter where it is in the envelope. Hence if a short note is played, the signal might not had time to rise to the maximum in the envelope, therefore release will be relative to the level reached in the envelope.

Envelopes can be applied not only to volume, but also to filter frequencies or oscillator pitches.

To correctly tune the pitch envelope modulation range:

  1. First turn the modulation/envelope amount knob down.
  2. Press the key and set the desired minimum with the pitch knob (offset for modulation).
  3. Turn sustain level all the way up, press the key and let the signal reach maximum.
  4. While on sustain, dial the modulation knob to the maximum pitch.

About cutoff modulation, the cutoff knob is the starting point of the modulation, that means that the sound will not be altered if cutoff is set to maximum.

Moreover, it is sometimes possible to inverted the envelope and reverse its behavior.

https://api.soundcloud.com/tracks/283985968/stream?client_id=3cQaPshpEeLqMsNFAUw1Q?plead=please-dont-download-this-or-our-lawyers-wont-let-us-host-audio

Recorded in the bedroom studio with my friend, Mysia. We are going to finish this track someday, at least that’s what we said.

https://api.soundcloud.com/tracks/275055998/stream?client_id=3cQaPshpEeLqMsNFAUw1Q?plead=please-dont-download-this-or-our-lawyers-wont-let-us-host-audio

158 BPM.

Blog at WordPress.com.

Up ↑