Holy Bot

Bedroom music production, gaming and random shit



Translate Sub onto Smaller Speakers

There’s a few things you can do to make your bass sound on smaller speakers like laptops, tablets and cellphones. First you need fundamental and harmonic content on your bass. The fundamental frequency is the base foundation note that represents the pitch that is played and the harmonics are the following frequencies that support the fundamental. In short, it’s the higher frequency harmonics that allow for the sub to cut through the mix.

One idea is to create higher frequency harmonics. The harmonics should be in unison with the fundamental frequency, but don’t contain it. (The harmonics trick your brain into hearing lower frequencies that aren’t really there.) Add a touch of harmonic saturation, drive a little warmth, a little fuzz to help that sub cut through. The harmonic distortion, adds high-frequency information to reveal presence on systems with poor bass response.

Also try to copy the bass to a parallell channel, bitcrush the higher harmonics and cut all lows and mix with the original bass.

If you’re beefing up your main bass by layering a separate, low-passed sine wave at the octave below, perhaps try square (or triangle) to add some subtle higher frequencies that allow the sub bass to translate better than a pure sine wave.

You can also try to EQ the bass. Try to boost the harmonic multiples of the fundamental frequency to hear some definition from the bass sound. And boosting above 300 Hz will bring out the bass’s unique timbral character. Actually, try around 1 kHz (but add a low-pass filter at around 2-3 kHz).

Use high-pass filtering (to clear the low-end frequencies and make room for the intended bass sound), and you can also side-chain your sub bass to keep it from fighting with the kick drum.

When it comes to kick drums you can add a small click noise to help it translate onto smaller speakers.

P.S. There are also plugins that use psycho-acoustics to calculate precise harmonics that are related to the fundamental tones of bass.

Headroom for MP3

I’ve written about the importance of headroom when submitting your track to a professional mastering engineer, but you should also pay attention to headroom when you do this on your own and when you encode MP3s.

Okay so when the track is mastered at 0 dB (the maximum level for digital audio files) many converters and encoders are prone to clip. Lossy compression formats utilize psychoacoustic models to remove audio information, and by doing so introduces an approximation error, a noise which can increase peak levels and cause clipping in the audio signal – even if the uncompressed source audio file appears to peak under 0 dB.

In Practice

For example SoundCloud transcodes uploaded audio to 128 Kbps MP3 for streaming. In this scenario, use a true peak limiter to ensure the right margin depending on the source material. A margin of -1.0 or -1.5 dBFS should work for no distortion (sometimes -0.3, -0.5 or -0.7 would work, but it’s safer to have greater margin).

Mixing with Pink Noise

Setting basic level and pan are usually the first things to do in the process of mixing. Choose a sound/channel, e.g. kick drum, to act as your main level reference, and balance all the other instruments tracks against it. So establish the initial gains and then refine with dynamics processing and stuff. That’s what I usually do.

But – here’s a neat trick to help you get the balance right: use pink noise as level reference and balance each sound/channel to it.

Generate or play pink noise at the stereo bus. Calibrate the noise to a sensible reference level that allow ample headroom on your master bus when mixing. Use an averaging meter, a RMS-type meter, to establish the level of the noise.

Start with soloing the first instrument and play it alongside the pink noise, and balance it directly against the noise by ear. That is, try to find the level at which the instrument is just audible above the noise, but not hidden. Now mute that instrument and solo the next one. Repeat. Kill the noise and voilà!

Mixing this way won’t make it perfect, but accurate enough for a start and then some.

Another (general) tip is to listen to and learn by mixers that are much better than you, and that you admire.

Note: Pink noise is a random signal, filtered to have equal energy per octave.

Compression Time Again

Compression is an invaluable tool that can be applied to almost any sound. Therefore, here’s a friendly reminder about compression and the settings of attack and release on a compressor.

Most times compression is used to control dynamics and taming peaks to get a smooth, consistent signal. Other times compression is used to add punch, impact, proximity or for tonal control.

Four Settings

There are four settings on most compressors. The threshold controls the point at which compression begins. The ratio is the setting for how much compression is being applied. (A so called limiter is a compressor with a high ratio, e.g. inf:1, that will stop the signal at the set threshold.) Then there are attack and release settings. Attack sets how long it takes to reach maximum compression once the signal exceeds the threshold. And release sets how long it takes for compression to stop after the signal gets below the threshold. (Some compressors feature an auto release, which automatically adjusts the release time based on the incoming signal.)


Attack controls how much initial impact gets through.

A fast attack time shaves off the initial transient impact, and can make it sound more consistent and controlled. But when gone too far, the sound will lose vibrance and seem more further away.

A slow attack time is letting a lot of transient formation through. The initial impact will come through and the compressor will start to work after that. This can make it sound punchy, big and aggressive, but not very consistent dynamically.


For release time, again there are two options: fast and slow. In general, fast release can render a more aggressive, gritty sound – the initial sustain is sort of brought up, meaning more perceived loudness. But when the release time is too fast, it can sound exaggerated, distorted and bad, and there can also occur some pumping artifacts.

A slow release time will give more dynamic control, more smoothness, but also sound a bit distant. And if overdone with a slower release, the compressor will not release in time for the next hit to come through, and that can suck the life out of the initial impact and sound flat.

Stack Compressors

An effective way to stack compressors is to put the compressor with the fast attack time first and the compressor with the slow attack time second. The first compressor will smooth out those transients and make the initial hits more consistent, while the second compressor, fed by the dynamically controlled signal, will accentuate the initial hits.

Add Life to Your Mix

Sometimes when I read about music production and audio engineering stuff I come across ideas that I personally wouldn’t use in my music, but nevertheless could be interesting – at least in theory – and perhaps someone else dare to try.

Here’s one: record your “as is” mix from your monitor speakers, using a couple of microphones, and then blend the recording with your final mix.

This could add vibrance and “realism”. It could of course also clutter your mix if you overdo it. If needed, try to poke the recording to play with the phase relationship.

Recording your mix like this can add some analog imperfection by revealing a little of the studio’s ambient, and the colors of the mics, preamps and monitors would also print this sound layer. And you need not to record in the studio, you could put the monitors in a (non-acoustic treated) reverbant room, or record with an opened window… You get the drift.

My Mixer

During 2015 my hardware synth collection grew considerably while the audio interface still had limited input connections. This led to an investment not of a bigger audio interface, but of an analog mixer.

By then I was looking for a no-frills compact mixer that was able to make a clear, pristine mix with high headroom and low noise. I had no need for neither built-in effects nor USB connection, but wanted a small footprint mixer and great sound quality. So I got the Mackie 1202VLZ4.


Even if I’m using the mixer merely as a patch bay, more or less a set and forget scenario, it’s a quite creative mixer. For example, the mute/alt 3–4 function serves both as muting and signal routing (where it acts as an extra stereo bus). This means that the alt bus can be used to route shit through serial effects as a stereo channel, which in turn opens up for further possibilities.

The 1202VLZ4 also has channel insert, and I’m now thinking of getting some effects, perhaps something from Strymon or Eventide.

In brief, I’m happy with the mixer, but I honestly haven’t had that many analog mixers, so I can’t really compare this one to others. Some say the 1202VLZ4 offers bang for the buck featuring Mackie’s flagship Onyx mic preamps and so on, but I, for one, can only say it works well.

P.S. There are times when I would have preferred an audio interface with like 18 input connections that could be mixed and recorded on separate tracks inside the DAW, true. But most of the time I only need the 4 voices of the Analog Four to be recorded individually, and with Overbridge it is possible already.

Today’s Best Tips on Music Production

10 essential tips… 20 mistakes… 30 production secrets and so on, such lists seems to be really popular these days. Although many of them are just full of crap. Especially forget about the longer checklists – even if you could find some good advices there, most tips are just nonsense, like “don’t mix bass with headphones”.

Anyway, to you aspiring producer, here’s a few things I think you should care about:

  • Listen to different styles of music and try to identify what you like and what you dislike.
  • Analyze your favorite artists’ work in great detail. Theorize with both feet on the ground.
  • Go ahead and copy other artists, but don’t settle there – tweak and add your own style and flavor.
  • Cover, remix and remake your favorite tracks, it’s a good and fun way to learn about music.
  • Use reference tracks, compare your shit to others, but don’t get paralyzed when your track doesn’t bang as loud as them.
  • Learn about synthesis and learn how to sound design different kind of instruments, e.g. strings, plucks, percussion (make synthetic drums using waveforms, a noise generator, filters, envelopes and such).
  • Check your music productions on several systems; from high-end studio monitor speakers to iPhone earbuds.
  • Sleep on it. Let your track mature over night and return to it with fresh ears.
  • Go hardware, get tactile if you are growing tired of a software-based environment. To actually play an instrument or to turn a real knob is really something else.
  • Get inspiration from collaborations with other artists. Just reach out to people you admire – this is globalization, this is the time of teh internetz.
  • Try to keep passionate about creating music, but don’t be afraid to make some demands of yourself, just to push things forward.

A Method to Make Synth Strings

Recently I got a Roland Alpha Juno-2. It’s an analog synth that has a couple of uncommon features: pulse width modulation on both the pulse/square and the sawtooth waveform, and a 7-stage contour generator, which adds a huge range of sonic possibilities.

Anyway, the AJ-2’s pretty good for lush polyphonic pads and strings. But instead of writing a review of this nearly 30 year old synth, I thought I’d give you guys a quick rundown of how to make strings, which you can translate to other subtractive synths. For this, I’m skipping the unique features of the AJs, although it’s best if the synth you’re using has pulse width modulation (PWM).

  1. Set a first oscillator to pulse, give it a pitch of 8’.
  2. Add slow movement by applying some PWM. You might need to use a LFO to do this; route LFO (triangle wave) as source and the oscillator’s pulse width as destination.
  3. Set a second oscillator to sawtooth and an octave higher than the first. Detune the pitch a few cent steps to render unison and fatten the sound.
  4. Mix the two oscillators so that the second is slightly lower.
  5. Add a subtle amount of vibrato (pitch modulation) using a LFO (triangle wave or sample and hold) to modulate the pitch of both oscillators.
  6. Bring in some white noise, though most of it should be muted by the LPF (see below), it can give the sound a little shimmer.
  7. Add a sub-oscillator set an octave down from the first oscillator.
  8. Set the low-pass filter to about halfway (aim for a mellow tone) and add a bit of resonance.
  9. Optionally, you can tweak the filter envelope for timbral variation.
  10. Adjust the amplification envelope to a slow attack and a medium release time. Bring up sustain so that the sound doesn’t lose volume over time.
  11. As far as effects go, try chorus, a little delay and/or a hell of a lot of reverb.

There you go – a thick, lush, synth string. Nothing like real orchestral strings, but yet a sound with its own characteristic, that’s just as valid as any other instrument.

Machined Drums Part 2

This is the second part of synthesizing drum sound. The first part covered the kick drum and the snare, now it’s time for the hihats and the hand clap. Let’s dig right into it.

Synthesize Hihats

There are several ways to create a metallic-sounding hihat and it can be rather complex. A simple way though, is to use a pure noise source with HPF, or a square wave with ring modulation. (It’s also possible to mix these two sound sources.)

Set the envelope of the VCA to a slow decay and a quick release time. Play staccato which should render the closed hithat, while a held note produces the open sound. You could of course save two patches with different decay and release to finetune both of the variants.

Add presents to the hihats by boosting at 3 kHz on the EQ.

It’s very hard to mimic recognisable, convincing, metallic percussion. This quest have defeated many before me, thus I’m just letting it be. Still, if you insist of accepting a sound you could use as a cymbal – though it sounds totally unrealistic – then grab a hihat patch, accentuate the high-pass filtered white noise, add a longer decay and release time and put some flanger effect to it.

Synthesize Hand Clap

To achieve something that can be called a hand clap, try to run white noise through a band-pass filter and use two individual EGs to shape the VCA. Modulate the first envelope with a LFO; set to sawtooth and the frequency to about half way, to and render a clap effect. Then set a second envelope to a long decay to add reverb. You should tweak these parameters as you se fit.

Boost the mids on the EQ to make an aggressive snap.

Try to put on a gated reverb effect to the sound, or just a tiny delay.

Create a free website or blog at

Up ↑