Holy Bot

Bedroom music production, gaming and random shit


making beats

Vocal Delay Ducking

The normal thing to treat a dry vocal is to put reverb and delay on it. But that could make the vocal a bit muddy.

To keep it in-your-face and conserve the clarity of the vocal, while still having an effect to make it sound bigger, try ducking the volume of the delays whenever the dry vocal is active. To do so, side-chain the delay bus to the lead vocal track.

For example, use a delay device on a return bus and put a quarter note delay with low feedback, and send it to the vocal track with a little less volume. On the same bus, put a compressor and select the vocal track as the side-chain source. Set it up as you like, perhaps bring down the wet-parameter some.

You can also try the same thing with a reverb.


Create a Shimmer Reverb

Shimmer is a feedback-reverb-pitch-shift-effect made popular by Brian Eno and Daniel Lanois. The idea is to feed a reverb to a pitch shifter and back again. Each delay repetition gets shifted one octave up. In this case I’m using Ableton Live with stock effects, the Reverb and Grain Delay where the signal gets delayed and pitch shifted. You can use these guidelines in different environments (hardware/software) but here’s how I do it:

  1. Insert two Return Tracks and put a Reverb on A.
  2. Turn off Input Processing Hi Cut, set Global Quality to High, turn off Diffusion Network High, a fairly long Decay Time and turn the Dry/Wet to 100 %.
  3. Enable Send B on the Return Track A and set it to max.
  4. Use the Grain Delay on Return Track B.
  5. Set Frequency to 1.00 Hz and Pitch to 12.0.
  6. Enable Send A on the Return Track B and set it to max.
  7. Dial Send A of the Track with the signal source that you what to shimmer.

Also try to bring in Send B on the signal. And play with the Size and Diffuse controls of the Reverb.

Split Frequency, Split

I’ve written about the perks of putting side-chain compression on only the low frequencies of a bass earlier.

To do so, three copies of the sound are needed. Or, as this post will show, you could split the frequency into three bands (high, mid and low). By doing this, it is possible to apply different signal processing on each band.

Now I usually try to write about music production on a more abstract level, and not about a specific DAW or instrument, but this time I going to illustrate with Ableton Live on Mac. The theory is the same though, you just need to figure out how it works in your particular environment.

So I’m using the stock effect Multiband Dynamics to split frequency. The device has noticeable affect and coloration on the signal, even when the intensity amount if set to zero, but it should be transparent enough for now.

  1. Drop a Multiband Dynamics in the Device View.
  2. Set the Amount control to 0.0 % to neutralize compression or gain adjustments to the signal.
  3. Group the Multiband Dynamics in an Audio Effect Rack (select the device and press CMD + G).
  4. Show the Chain List of the rack.
  5. Dictate the crossover points on High and Low (the Mid consists of what is left in between, so remember to also change the crossover points in the mid chain if you make adjustments on the others), e.g. set the bottom of the frequency range of the high band to 1.00 kHz.
  6. Duplicate the selected chain two times.
  7. Rename all of the chains High, Mid and Low, from top to bottom.
  8. Solo each band respectively on the Split Freq, i.e. solo Low on the low chain.

Now process each band individually. Use a Utility device on the low chain and set Width to 0.0 % to direct the low frequencies to mono. Also, on this band, set up a side-chain compression triggered by the kick drum. Try a stereo widening effect and some reverb on the mid chain. And perhaps a little saturation to add some crunch on the high chain, I dunno, it’s up to you.

Bedroom Studio Tips Revisited

Three years ago I posted a list of some music production methods and tips on my blog that still gets some attention. Now, here’s some other good read (I hope).

Moreover, you really should check out the most popular post on this blog about the best tips on music production that I can think of.

Translate Sub onto Smaller Speakers

There’s a few things you can do to make your bass sound on smaller speakers like laptops, tablets and cellphones. First you need fundamental and harmonic content on your bass. The fundamental frequency is the base foundation note that represents the pitch that is played and the harmonics are the following frequencies that support the fundamental. In short, it’s the higher frequency harmonics that allow for the sub to cut through the mix.

One idea is to create higher frequency harmonics. The harmonics should be in unison with the fundamental frequency, but don’t contain it. (The harmonics trick your brain into hearing lower frequencies that aren’t really there.) Add a touch of harmonic saturation, drive a little warmth, a little fuzz to help that sub cut through. The harmonic distortion, adds high-frequency information to reveal presence on systems with poor bass response.

Also try to copy the bass to a parallell channel, bitcrush the higher harmonics and cut all lows and mix with the original bass.

If you’re beefing up your main bass by layering a separate, low-passed sine wave at the octave below, perhaps try square (or triangle) to add some subtle higher frequencies that allow the sub bass to translate better than a pure sine wave.

You can also try to EQ the bass. Try to boost the harmonic multiples of the fundamental frequency to hear some definition from the bass sound. And boosting above 300 Hz will bring out the bass’s unique timbral character. Actually, try around 1 kHz (but add a low-pass filter at around 2-3 kHz).

Use high-pass filtering (to clear the low-end frequencies and make room for the intended bass sound), and you can also side-chain your sub bass to keep it from fighting with the kick drum.

When it comes to kick drums you can add a small click noise to help it translate onto smaller speakers.

P.S. There are also plugins that use psycho-acoustics to calculate precise harmonics that are related to the fundamental tones of bass.

New keyboard stand, four tiers, compact living. Early December 2016.

Headroom for MP3

I’ve written about the importance of headroom when submitting your track to a professional mastering engineer, but you should also pay attention to headroom when you do this on your own and when you encode MP3s.

Okay so when the track is mastered at 0 dB (the maximum level for digital audio files) many converters and encoders are prone to clip. Lossy compression formats utilize psychoacoustic models to remove audio information, and by doing so introduces an approximation error, a noise which can increase peak levels and cause clipping in the audio signal – even if the uncompressed source audio file appears to peak under 0 dB.

In Practice

For example SoundCloud transcodes uploaded audio to 128 Kbps MP3 for streaming. In this scenario, use a true peak limiter to ensure the right margin depending on the source material. A margin of -1.0 or -1.5 dBFS should work for no distortion (sometimes -0.3, -0.5 or -0.7 would work, but it’s safer to have greater margin).

“Hope my haters keep a special place in their heart for me”

158 BPM.

Create a free website or blog at

Up ↑